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evolution variable Y = ln [Eθ/Q0], we find marked differences in the shape and norm of

single parton distributions calculated in the MLLA or in the coherent branching formalism,

respectively. For asymptotically large values of Y , the difference in norm persists, while

differences in shape disappear. In this way, our study allows us to compare the MLLA ap-

proach, which is of particular physics interest because of its phenomenological success, to a

formalism which at the same parametric accuracy implements additional physics features

expected for a more complete calculation. We discuss in particular the qualitative differ-

ences between both formalisms in the limit of very small hadronization scale Q0 → ΛQCD,

in which the MLLA formalism approaches a limiting spectrum. We identify why the co-

herent branching formalism does not allow for a limiting spectrum and we comment on the

implications for hadronization pictures based on local parton hadron duality.
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1 Introduction

Since the early days of QCD, it has been known that destructive interference between

soft gluon emissions within a jet suppresses hadron production at small values of the

momentum fraction x = ph/E. For inclusive single-parton distributions, this is seen already

in the double logarithmic approximation (DLA), which predicts a hump-backed plateau [1].

However, if one considers the kinematic regime of sufficiently small momentum fractions

x, and sufficiently large jet energies E, where ln [1/x] ∼ ln [E/Q0] ∼ O
(

1/
√

αs

)

, then

corrections to the asymptotic DLA result are of relative order
√

αs for the peak position

of the hump-backed plateau [1–3]. These corrections remain sizable up to the highest

experimentally accessible jet energies. The coherent parton branching formalism [4, 5]

leads to evolution equations for the inclusive single- and multi-parton intra-jet distributions,

which contain the complete set of next-to-leading O(
√

αs) corrections, as well as a subset

of higher order corrections. The modified leading logarithmic approach (MLLA) [5, 6] to

inclusive parton distributions, which is at the basis of many phenomenological comparisons,

can be obtained from these evolution equations after further approximations.1

One may ask whether the evolution equations of the coherent branching formalism

contain more physics than MLLA. This idea is not supported by parametric considerations,

1The evolution equations of the coherent branching formalism are defined in (2.3) below. Throughout

this work, we follow common practice by using the label ’MLLA’ for solutions of the equations (2.16)

and (2.17).
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since both MLLA and the original evolution equations are complete up to the same order

in
√

αs. However, the idea is supported by kinematic considerations, since the original

evolution equations conserve energy exactly, while MLLA does not. This has motivated in

recent years several works which aim at going beyond MLLA. In particular, in an approach

referred to as NMLLA [7–9], one keeps all terms of the original evolution equations, which

are one order O(
√

αs) higher than the MLLA accuracy. In the same manner also a subset

of O(αs) corrections to MLLA have been determined [10, 11]. On the other hand, one may

solve the original evolution equations numerically without any further approximation. So

far, this has been done for fully integrated partonic jet multiplicities only [12, 13]. The main

result of the present work is to solve these original evolution equations for the inclusive

single-parton distributions, to compare the numerical results to those of MLLA, and to

identify the analytical origin and numerical consequences of the differences between both.

It has been emphasized repeatedly that the QCD prediction for the hump-backed

plateau of the single inclusive distribution remains unaffected by the non-perturbative

hadronization process as long as hadronization is sufficiently local so that it does not

alter significantly the shapes of partonic momentum distributions. In particular, the phe-

nomenologically successful comparison of the (rescaled) partonic MLLA prediction with

inclusive hadronic distributions supports a local parton-hadron duality (LPHD) underly-

ing the hadronization mechanism [14, 15]. This success of MLLA supplemented by LPHD

is based on the so-called MLLA limiting spectrum, which is obtained by continuing the per-

turbative evolution down to Q0 = ΛQCD. On the other hand, other phenomenologically suc-

cessful approaches, e.g. those employed in Monte Carlo event generators, stop perturbative

evolution at a significantly larger scale Q0 ∼ O(1GeV). The corresponding hadronization

models, such as the Lund string fragmentation or cluster hadronization lead to a significant

further softening of single-inclusive distributions during hadronization [16–18]. This raises

the question to what extent extrapolating the perturbative evolution into the nominally

non-perturbative regime between ΛQCD and O(1GeV) can account for the dynamics of

hadronization. We note that the perturbative evolution implemented in modern MC event

generators has the same parametric accuracy as MLLA and the coherent branching formal-

ism, and it conserves energy exactly as does the coherent branching formalism.2 Beyond

obtaining an additional test for the robustness of the physics conclusions drawn from the

phenomenologically successful MLLA approach, we thus expect to add to our picture of

the hadronization process by studying analytically and numerically for Q0 close to ΛQCD

the differences between MLLA and the exact solution in the coherent branching formalism.

The paper is organized as follows. In section 2, we introduce the equations of the co-

herent branching formalism [4, 5], we discuss in detail their relation to the MLLA approach

in section 2.2, and we describe shortly how we solve these evolution equations. Section 3

presents a numerical comparison of both formalisms. In particular, we focus in section 3.3

on the qualitative differences between both formalisms in the limit Q0 → ΛQCD, and we

isolate the analytical origin of this difference. We then discuss in section 3.4, to what extent

2For the present study, the use of the coherent branching formalism is advantageous, since the approx-

imations leading from the coherent branching formalism to MLLA can be stated analytically and can be

tested separately.
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for hadronization scales Q0 close to ΛQCD, characteristic differences between the coherent

branching formalism and MLLA remain, if one allows for the freedom of adapting the norm

and hadronization scale independently in both approaches. This amounts to studying to

what extent the coherent branching formalism supplemented with LPHD at very low scale

Q0 can be brought into agreement with the MLLA limiting spectrum, which has been

phenomenologically successful. The physical origin of several characteristic features of the

coherent branching formalism, which are not as prominent in the MLLA approach, can be

understood by studying separately the distributions of quarks and gluons in a quark or a

gluon jet. The corresponding results are discussed shortly in section 4. Our conclusions

are summarized in section 5.

2 Evolution equations for single parton distributions at small x

We want to calculate the single distributions Dq(x, Y ) and Dg(x, Y ) of partons in a quark

or gluon jet, respectively. Here, x = p/E is the jet momentum fraction of partons,

and the variable

Y = ln
Eθ

Q0
(2.1)

is written in terms of the sufficiently small jet opening angle θ, and the hadronic scale Q0.

We denote the logarithm of the momentum fraction by

l = ln
1

x
. (2.2)

In the coherent parton branching formalism, the evolution equations for these distributions
are given by [4, 5]

∂Y Dq(x, Y ) =
1

2

∫ z+

z
−

dz
αs(k

2

⊥
)

π

×
{

Pqq(z)

[

Dq

(x

z
, Y + ln z

)

+ Dg

(

x

1 − z
, Y + ln(1 − z)

)

− Dq(x, Y )

]

+ Pgq(z)

[

Dg

(x

z
, Y + ln z

)

+ Dq

(

x

1 − z
, Y + ln(1 − z)

)

− Dq(x, Y )

]

}

,

∂Y Dg(x, Y ) =
1

2

∫ z+

z
−

dz
αs(k

2

⊥
)

π

×
{

Pgg(z)

[

Dg

(x

z
, Y + ln z

)

+ Dg

(

x

1 − z
, Y + ln(1 − z)

)

− Dg(x, Y )

]

+ 2nf Pqg(z)

[

Dq

(x

z
, Y + ln z

)

+Dq

(

x

1− z
, Y + ln(1− z)

)

− Dg(x, Y )

]

}

,

(2.3)
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Figure 1. The range (2.6) of z-values, which are kinematically allowed in the evolution of the

single-parton distributions Dq(x, Y ), Dg(x, Y ) up to Y = 2 (left), Y = 5 (middle), Y = 10 (right).

with the unregularized splitting functions

Pqq(z) = CF
1 + z2

1 − z
,

Pgg(z) = 2CA

(

1 − z

z
+

z

1 − z
+ z(1 − z)

)

,

Pqg(z) = TR

(

z2 + (1 − z)2
)

, TR =
1

2
,

Pgq(z) = CF
1 + (1 − z)2

z
. (2.4)

To calculate jet multiplicity distributions with next-to-leading logarithmic accuracy,

one can use a DGLAP chain of 1 → 2 parton branchings which follows an exact angular

ordering prescription (in contrast to the strong angular ordering prescription in DLA) and

in which the coupling constant depends on k2
⊥ at each vertex. In the set of evolution

equations (2.3) the angular ordering is implemented by the choice of the arguments (Y +

ln z) and (Y + ln(1− z)) of the parton distributions and also the k⊥ prescription is applied

for the coupling [4].

The limits z−, z+ on the z-integral in (2.3) are set by the requirement that the trans-

verse momentum k⊥ is sufficiently large for perturbative evolution to be valid. That means,

k⊥ is larger than a hadronic scale Q0

k⊥ ≈ z(1 − z)Eθ ≥ Q0 ⇒ Y + ln z + ln(1 − z) ≥ 0. (2.5)

For Y < ln 4, this inequality is not satisfied for any real z, so evolution occurs only for

Y > ln 4, where the inequality is fulfilled for

z− ≡ 1

2

(

1 −
√

1 − 4e−Y
)

< z < z+ ≡ 1

2

(

1 +
√

1 − 4e−Y
)

. (2.6)

This kinematical regime is depicted in figure 1. One can check that if (2.6) is satisfied, then

the arguments (Y + ln z) and (Y + ln(1 − z) ) of the functions Dq and Dg in (2.3) cannot

– 4 –
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be negative. The coupling constant can be written as

αs(k
2
⊥) =

π

2Nc β

1

Y +ln z+ln(1− z)+λ
, β =

1

4Nc

(

11

3
Nc −

4

3
nfTR

)

, λ = ln
Q0

ΛQCD
.

(2.7)

2.1 Initial conditions and ansatz for solution

A parton shower in the real world is pictured often as a quark or a gluon produced ini-

tially with high energy and virtuality and evolving perturbatively from large Y to a small

hadronic scale Y0. Evolution occurs by emitting partons at smaller and smaller angles,

till a minimal angle θ0 is reached, at which non-perturbative hadronic effects set in. The

numerical solution of the evolution equations (2.3) will proceed in the opposite direction,

that is, the initial conditions for the solution of (2.3) are set at the small scale Y0 which

corresponds to the final partonic state of the physical process. These initial conditions

specify which partons are measured. For instance, consider the initial condition

Dq(x, Y0) = δ(1 − x) , Dg(x, Y0) = 0 . (Case I) (2.8)

This initial condition for the evolution equation specifies that the partons at the low scale

Y0 cannot split further and, by virtue of the choice (2.8), these partons are quarks. Starting

the evolution from the initial condition (2.8), the functions Dq(x, Y ) and Dg(x, Y ) denote

the single-quark distributions in a quark and a gluon jet, respectively. Alternatively, for

the initial condition

Dq(x, Y0) = 0 , Dg(x, Y0) = δ(1 − x) , (Case II) (2.9)

the functions Dq(x, Y ) and Dg(x, Y ) denote the single-gluon distributions in a quark and

a gluon jet, respectively. Previous studies [5–13] have focused on the distribution of all

partons in a quark or a gluon jet. This is obtained by evolving Dq(x, Y ) and Dg(x, Y ) from

the initial condition

Dq(x, Y0) = δ(1 − x) , Dg(x, Y0) = δ(1 − x) . (Case III) (2.10)

In section 3 of this paper we present the results for the case of the initial condition (III)

whereas in section 4 we consider cases (I) and (II).

The most general ansatz for the solutions of the evolution equations (2.3) reads

Dq(l, Y ) = ∆q(Y ) δ(l) + Q(l, Y ), (2.11)

Dg(l, Y ) = ∆g(Y ) δ(l) + G(l, Y ). (2.12)

Here, the discrete parts arise as a natural consequence of the initial condi-

tions (2.8), (2.9) and (2.10). As we shall see later on, these functions, depending on

the choice of initial condition, either equal identically zero or are to be identified with

the Sudakov form factors, which denote the probability that a parton does not split in the

evolution between Y0 and Y . The continuous parts Q(l, Y ) and G(l, Y ) vanish at the initial

scale Y = Y0 and arise from the further evolution with (2.3).

– 5 –



J
H
E
P
0
5
(
2
0
0
9
)
0
2
3

2.2 The MLLA evolution equations

In the following sections, we shall compare the numerical solution of (2.3) to the results

obtained from the MLLA evolution equations. Parametrically, the accuracy of both sets of

equations differs only to next-to-next-to-leading order in
√

αs, and both sets of equations

are incomplete at this order. We shall find that the solutions of both sets of evolution

equations show characteristic differences. To understand these differences, we explain here

how the MLLA evolution equations can be obtained from (2.3) by a set of approximations,

which are valid for Y , ln[1/x] ∼ O(1/
√

αs).

Counting derivatives ∂Y , ∂ln x ∼ O(
√

αs), one sees that for a determination of the

distributions Dq,g up to O(
√

αs), the right hand side of (2.3) has to be kept up to O(αs).

This allows for the following approximations:

1. Expand Dq,g

(

x
1−z , Y + ln(1 − z)

)

for ln(1 − z) ≪ 1.

In the MLLA approach, only the leading term Dq,g (x, Y ) is kept. The first correction

is suppressed by one power of
√

αs coming from ∂Y or ∂ln x, and another power of
√

αs coming from the fact that ln(1 − z) ∼ z for small z.

2. Approximate the argument of αs (Y + ln z + ln(1 − z)) by αs (Y + ln z) for singular

terms and αs (Y ) for regular terms.

For terms in the integrand of (2.3), which multiply the singular part of the splitting

functions, the integral is dominated by z-values close to 0 or 1. In these terms,

one can approximate αs (Y + ln z + ln(1 − z)) → αs (Y + ln z) [after having changed

z → 1 − z in terms which are singular in (1 − z)]. For terms multiplying the regular

part of splitting functions, the dominant contribution to the integral comes from z

not too far from 1/2, so that one approximates αs (Y + ln z + ln(1 − z)) → αs (Y ).

3. Approximate the boundaries z±.

These boundaries arise from the kinematic constraint (2.5), which limits the z-

integration to the support of Θ (Y + ln z + ln(1 − z)). Following the same logic as in

approximating the argument of αs, one replaces Θ (Y + ln z + ln(1 − z)) → Θ (Y ) for

regular and Θ (Y + ln z + ln(1 − z)) → Θ (Y + ln z) for singular terms. However, the

lower z-limit is effectively set by the requirement that x/z of Dq,g is smaller than one.

4. Further approximation in regular terms.

In the regular terms, the MLLA approach replaces Dq,g

(

x
z , Y + ln z

)

by Dq,g (x, Y ).

This can be justified by counting ∂Y , ∂ln x ∼ O(
√

αs) and observing that ln z does

not give a parametric enhancement for z ∼ O(1/2).

Applying these approximations to (2.3) and changing integration variables from z →
(1− z) with the help of identities such as Pqq(z) = Pgq(1− z), one arrives at the evolution
equations [19]

∂Y Dq(x, Y ) =
CF

Nc

{
∫

1

0

dz

z
γ2

0
(Y + ln z)Dg

(x

z
, Y + ln z

)

− aqg γ2

0
(Y )Dg (x, Y )

}

, (2.13)

∂Y Dg(x, Y ) =

∫

1

0

dz

z
γ2

0
(Y + ln z)Dg

(x

z
, Y + ln z

)

− agq γ2

0
(Y )Dq (x, Y ) − agg γ2

0
(Y )Dg (x, Y ) ,

(2.14)

– 6 –
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where γ2
0(Y ) = 1/(β(Y + λ)) and

aqg =
3

4
, agq = −2

3

nfTR

Nc
, agg =

1

4Nc

(

11

3
Nc +

4

3
nfTR

)

. (2.15)

In equation (2.14), the parton distribution Dq in a quark jet appears only in a term which

is multiplied by a prefactor of O(αs). Hence, to arrive at a closed expression for Dg, which

is accurate to next-to-leading order in O(
√

αs), it is sufficient to use the leading-order

DLA relation

Dq(l, Y ) =
CF

Nc
Dg(l, Y ) , (2.16)

and one obtains from (2.14)

∂Y Dg(x, Y ) =

∫ 1

0

dz

z
γ2
0(Y + ln z)Dg

(x

z
, Y + ln z

)

− a1 γ2
0(Y )Dg (x, Y ) , (2.17)

where

a1 = agg +
CF

Nc
agq =

1

4Nc

[

11

3
Nc +

4

3
nfTR

(

1 − 2CF

Nc

)]

. (2.18)

Eq. (2.17) is referred to as MLLA evolution equation [1, 5]. In phenomenological appli-

cations of the MLLA equation, the parton distribution in a quark jet is then commonly

determined with the help of (2.16). Compared to the DLA approximation, the MLLA

equation shows mainly two improvements: the coupling constant is running and the

negative term ∝ −γ2
0(Y )G (x, Y ) on the right hand side of eq. (2.17) accounts for recoil

effects which lead to a softening of the spectra as compared to DLA.

While the MLLA evolution equation (2.17) and the evolution equation (2.3) in the

coherent branching formalism are complete to the same order in
√

αs, the approximations

listed in points 1.-4. above induce characteristic qualitative changes to the results of these

evolution equations. In particular:

1. Violation of exact energy conservation

The small-z approximations to the integrand of (2.3), made in the approximations 1,

3 and 4 listed above, violate exact energy conservation. The numerical manifestation

of this will be discussed in the context of figure 5 below.

2. Changing the λ → 0-behavior

As noted before in studies of total jet multiplicities [12, 13], the coherent branching

formalism does not allow for a limiting curve, λ → 0. In contrast, it is a peculiar

feature of the MLLA approach, that its solutions have a well-defined finite limit

for λ → 0, which is known as the “limiting spectrum” and which is at the basis of

many phenomenological comparisons [1, 14, 15, 20, 21]. In section 3.3, we discuss

numerical results which identify the analytical origin of this qualitative difference.

3. The Y -dependence of the discrete part of Dq,g changes from exponential to power-law

In the following, all numerical results for the MLLA evolution are obtained with the

– 7 –
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initial conditions Dg(x, Y ) = δ(1 − x). Using the ansatz Dg(l, Y ) = ∆g(Y ) δ(l) +

G(l, Y ) of eq. (2.12), one finds for the MLLA eq. (2.17) the discrete part

∆MLLA(Y ) =

(

Y + λ

λ

)−a1/β

(2.19)

and the equation for the continuous part G(l, Y ). This expression shows a power-

law dependence, while the corresponding discrete part of the solution (2.3) decays

exponentially with Y .

2.3 Evolution equations in the coherent branching formalism

In this subsection, we return to the full evolution equations (2.3) of the coherent branching

formalism. We study these equations with the initial condition (2.10), which corresponds

to counting both quarks and gluons in the final state. In this case the discrete parts of the

distributions from eqs. (2.11), (2.12) have an interpretation of the Sudakov form factors

and we denote ∆q(Y ) ≡ Sq(Y ) and ∆g(Y ) ≡ Sg(Y ). Inserting the ansatz (2.11), (2.12)

into (2.3), we find for the Sudakov form factors

∂Y Sq(Y ) = −1

2

∫ z+

z
−

dz
αs(k

2
⊥)

π
[Pqq(z) + Pgq(z)] Sq(Y ), (2.20)

∂Y Sg(Y ) = −1

2

∫ z+

z
−

dz
αs(k

2
⊥)

π
[Pgg(z) + 2nfPqg(z)] Sg(Y ). (2.21)

The above equations are not coupled and can be easily solved. It follows from the integra-

tion boundaries z−, z+ given in (2.6), that

Sq(Y ) = Sg(Y ) = 1 for Y < ln 4 . (2.22)

After exploiting the z ↔ 1 − z symmetry of the transverse momentum (2.5) and the

integration boundaries, and with the help of the property Pqq(z) = Pgq(1 − z), one finds

for the initial condition (2.10) and for Y > ln 4

Sq(Y ) = exp

{

− CF

2Ncβ

∫ Y

ln 4
dY ′

∫ z+

z
−

dz

Y ′ + ln z(1 − z) + λ

1 + z2

1 − z

}

, (2.23)

Sg(Y ) = exp

{

− 1

4Ncβ

∫ Y

ln 4
dY ′

∫ z+

z
−

dz
dz

Y ′ + ln z(1 − z) + λ

×
[

2CA

(

1− z

z
+

z

1− z
+ z(1− z)

)

+ 2nfTR

(

z2+ (1− z)2
)

]

}

. (2.24)

We have performed the double integrals in eqs. (2.23) and (2.24) numerically. Figure 2

shows the result for three values of λ. For Y > ln 4, these factors decrease almost expo-

nentially. One can show that for large Y the slope changes with Y according to

d ln Sq,g

dY
≃ −cq,g ln

[

Y + λ

λ

]

, (2.25)

where cq = CF /(Ncβ) and cg = 1/β.

– 8 –
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Figure 2. The Sudakov form factors (2.23) and (2.24) for three different values of λ.

The solutions Sq(Y ), Sg(Y ) enter the evolution equations for Q(l, Y ) and G(l, Y ).

After changing the integration variable z to l̄ = ln(z/x), the equations for the continuous

parts of the spectra can be written as

∂Y Q(l, Y ) =

∫ l̄max

l̄min

dl̄ Γs(l − l̄, Y )

{

Pqq(l − l̄)Q(l̄, Y − l + l̄) + Pgq(l − l̄)G(l̄, Y − l + l̄)

}

+ Γs(l, Y )

{

Pqq(l)Sq(Y − l) + Pgq(l)Sg(Y − l)

}

+ ∂Y ln Sq(Y )Q(l, Y ),

∂Y G(l, Y ) =

∫ l̄max

l̄min

dl̄ Γs(l− l̄, Y )

{

Pgg(l− l̄)G(l̄, Y − l+ l̄)+ 2nfPqg(l− l̄)Q(l̄, Y − l+ l̄)

}

+ Γs(l, Y )

{

Pgg(l)Sg(Y − l) + 2nfPqg(l)Sq(Y − l)

}

+ ∂Y ln Sg(Y )G(l, Y ),

(2.26)

where we have introduced the shorthand

Γs(l, Y ) =
1

2Ncβ

e−l

Y − l + ln(1 − e−l) + λ
. (2.27)

The limits of integration in eq. (2.26) are

l̄min = l − ln
2

1 −
√

1 − 4e−Y
, l̄max = l − ln

2

1 +
√

1 − 4e−Y
. (2.28)

We recall that the functions G(l, Y ) and Q(l, Y ) vanish when the first argument is negative.

In the equations (2.26), the logarithmic derivatives ∂Y ln Sq,g(l, Y ) on the right hand side

are formal notational shorthands, denoting the expressions (2.20), (2.21) irrespective of the

initial conditions. These logarithmic derivatives decrease only logarithmically with Y , as

seen from eq. (2.25). Hence, the rapid decrease of the Sudakov form factors itself does not

render the corresponding terms in (2.26) negligible at large Y .
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3 Numerical results

We have solved numerically the evolution equations for the continuous parts of single parti-

cle distributions in quark and gluon jets in the coherent parton branching formalism (2.26)

and in the MLLA approach (2.17). The solutions depend on

λ = ln Q0/ΛQCD , (3.1)

which specifies in units of ΛQCD the value of the hadronization scale Q0 up to which the

parton shower is evolved. As discussed in more detail below, the solutions for the evolution

equations (2.3) can be obtained for finite values of λ, only.

In the following, we show numerical results for λ = 0.01, λ = 0.2 and λ = 1.0. The

MLLA limiting spectrum is approximately 3 − 4% larger in norm and similar in shape,

compared to the MLLA solution for λ = 0.01. Hence, our choice for this smallest value

of λ is motivated by the interest in exploring the solutions of the coherent branching

formalism (2.3) for a parameter range in which the MLLA limiting spectrum is almost

reached. Our choice of the largest value λ = 1.0 is motivated by the fact that parton showers

implemented in Monte Carlo event generators typically end the perturbative evolution at

a hadronization scale Q0 which is significantly larger than ΛQCD and for which λ ∼ 1 is an

order of magnitude estimate. We have chosen one value λ = 0.2 in between.

3.1 The distributions Q(l, Y ) and G(l, Y )

In figure 3, we present for λ = 0.2 results for the continuous part of the single-parton

distributions inside a quark and a gluon jet, evolved from the initial condition (2.10) at

Y0 = 0 up to different values of Y .

We consider first the evolution for Y < 5. As seen in figure 3, the single inclusive

distributions obtained for the evolution within the coherent branching formalism show for

small Y a large yield at low values of l ≪ Y . This effect is more pronounced for the

distribution in a quark jet, than for the distribution in a gluon jet. It can be understood

on general grounds from the fact that the initial conditions (2.10) for the evolution are

delta-functions at l = 0, and that the results for small Y remember these initial conditions.

Moreover, quarks are less likely to branch than gluons, and in their first branching they

are likely to keep a large fraction of their energy. This tends to make the distribution in a

quark jet harder than in a gluon jet, as clearly seen in figure 3. Upon further evolution to

Y = 3.3, 4.2, 5.0, the yield of hard partons (say partons with l < 1) in a gluon jet decreases

rapidly to a value comparable with (and for some region of l even smaller than) the results

obtained in the MLLA approach. On the other hand, the yield of hard partons in a quark

jet remains enhanced significantly over the yield obtained in the MLLA approach up to

relatively large values of the evolution parameter Y . Also in the region around the peak

of the single inclusive distributions, there are significant differences between the MLLA

approach and the coherent branching formalism.

We recall that the parametric reasoning underlying the evolution equations (2.3) is

valid for sufficiently large Y in the region l ∼ O(Y ) encompassing the peak. Up to Y <

5, the evolution shows several preasymptotic features. The right hand side of figure 3
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Figure 3. The continuous parts of the inclusive distribution of all partons in gluon (upper panel)

and quark jet (lower panel). Results are shown for evolution in the coherent parton branching

formalism (2.3), and in the MLLA approach (2.17) for λ = 0.2. Left hand side: evolution up to

Y = 2.5, 3.3, 4.2 and 5.0. Right hand side: evolution up to Y = 15, 20, 25 and 30.

illustrates how these preasymptotic features become less pronounced upon further evolution

in Y . The numerical results for the coherent branching formalism and the MLLA approach

agree very well in shape and differ in norm by a factor of order unity which is Y -independent

to good accuracy. Closer investigation shows that the factors needed to adjust the norm

between both approaches differ for gluon jets (normalization factor 1.24 for λ = 0.2) and

quark jets (normalization factor 1.30 for λ = 0.2). This illustrates the extent to which for

sufficiently large Y , the region around the peak of the single-parton distributions lies at

sufficiently large l to be calculable within the accuracy of the coherent branching formalism.

To further illustrate the slow but steady convergence in shape between the MLLA

results for single-parton distributions and those of the coherent branching formalism, we

have plotted in figure 4 the evolution of the peak position of these distributions as a function

of Y . We see that the peak positions in both approaches differ largely for Y ≤ 5 − 7,

consistent with our earlier remarks. The value of lmax/Y decreases slowly with Y , but

even for the largest values explored here, the position of the peak differs significantly from

the DLA result lmax/Y = 1/2.
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Figure 4. The evolution in Y of the peak position of the continuous parts of the inclusive parton

distributions. Results are shown for all partons in a gluon jet (upper straight line) or a quark jet

(lower straight line), calculated in the coherent parton branching formalism (2.3). Results are also

shown for the MLLA approach (2.17) (dashed line), for which the peak positions of the distributions

for quark and gluon jets coincide. All results are calculated for λ = 0.2 and the peak position lmax

is plotted in units of Y .

3.2 Total multiplicity and energy conservation

The single-parton distributions inside quark and gluon jets can be characterized by their

moments. The zeroth and first moments of the inclusive single-parton distributions are of

particular interest, since they define the total parton multiplicity in a quark or gluon jet,

Nq,g(Y ) =

∫

dl Dq,g(l, Y ) , (3.2)

and the total energy fraction inside a quark or gluon jet

1

E

∑

partons

Ep(Y ) =

∫

dxxDq,g(x, Y ) . (3.3)

For an energy-conserving evolution of Dq,g, the first moment of the single-parton distribu-

tion must yield the total jet energy E, and the fraction (3.3) must equal one. As seen in

the bottom panel of figure 5, this is satisfied for the coherent branching formalism. Since

we know that the evolution equations (2.3) conserve energy, this is a cross check of the

numerical accuracy of our solution. Energy is not conserved in the MLLA approach. We

note that for sufficiently large Y , a formalism which does not conserve energy may account

accurately for the functions Dq,g(x, Y ) in a wide region around the peak. This is so, since

for large Y the region around the peak of Dq,g will be at x values, which are much softer

than the region of x space which contributes dominantly to (3.3).

Within the MLLA approach, one customarily uses equation (2.16) to relate the single-

parton distributions in quark and gluon jets, G(x, Y ) = Nc/CF Q(x, Y ). This relation is
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Figure 5. Upper plot: Y -dependence of the total parton multiplicity (3.2) in a quark or gluon

jet, calculated in the coherent parton branching formalism (2.3) (straight lines), and in the MLLA

approach (2.17) (dashed lines) for λ = 0.2. Lower plot: The ratio (3.3) of the total jet energy

contained in the single parton distribution to the initial jet energy. The upper panel is for gluon

jets, the lower one for quark jets, λ = 0.2.

valid to DLA accuracy and leads to the first moment (3.3) of a quark jet equal to the total

energy faction of a gluon jet multiplied by 4/9. We did not include this result in figure 5,

since it does not add further information.

The total parton multiplicities within a quark or a gluon jet are plotted in the upper

panel of figure 5. These multiplicities satisfy evolution equations for integrated parton

distributions, which are much simpler than the set of equations (2.3), and which have

been studied numerically [12, 13]. We checked that we reproduce these results, if we

adopt the same modifications to the coherent branching formalism (2.3). We also tested
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Figure 6. Same as figure 3 but for λ = 0.01 (left column) and λ = 1.0 (right column).

the numerical accuracy of our routines for Dq,g(x, Y ), by comparing the integral (3.2)

to the result of the simpler evolution equations for multiplicities, and we found perfect

agreement. Within MLLA, the multiplicities for the limiting case (λ = 0) and at large

values of Y are known to rise like [1, 2, 7]

NMLLA(Y ) ∼ Y −a1/(2β)+1/4 e2
√

Y/β . (3.4)

This strong rise of the multiplicity is seen in figure 5. At large Y , the rise is the same in the

MLLA approach and in the coherent branching formalism. In comparison to the MLLA ap-

proach, the multiplicities obtained in the coherent branching formalism are a factor ∼ 1.24

for gluon jets and a factor ∼ 1.30 higher for quark jets at large Y . This is consistent with our

observation in figure 3 and indicates that at large Y , the distributions obtained in both ap-

proaches can be made to coincide by an approximately Y -independent multiplicative factor.

3.3 Dependence of Q(x, Y ) and G(x, Y ) on λ

The numerical results shown in the previous subsections 3.1 and 3.2 were obtained for

λ = 0.2. Here, we discuss the dependence of these results on λ. For fixed jet energy E and

evolution variable Y , decreasing λ amounts to increasing ΛQCD. As a consequence, a smaller

value of λ is expected to lead to a more ’violent’ evolution (i.e. more parton branchings)
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and it will thus lead to a higher jet multiplicity and a softer distribution within the same

Y -interval. These general expectations are confirmed by the curves in figure 6, which show

the distributions of all partons in a quark or a gluon jet for evolution over small Y -intervals

up to Y ≤ 5. In particular, for smaller λ, single parton distributions increase in multiplicity

and the peak position of the distributions shifts to larger values of ln[1/x] as λ decreases.

It had been noted already in studies of total jet multiplicities [12, 13], that the coherent

branching formalism does not have a finite limit λ → 0. Our numerical studies support this

observation on the level of single-inclusive parton distributions: the differences in norm be-

tween both approaches increase slowly but without bound if λ approaches zero. To identify

the origin of this qualitative difference, we have tested separately the consequences of the

four analytical approximations in section 2, by which the MLLA approach differs from the

coherent branching formalism. We observe numerically: The solutions of equations (2.3)

do not have a limiting spectrum and this does not change when these equations are mod-

ified by approximation 1 in section 2.2. But when equations (2.3) are supplemented by

approximations 1 and 2 in section 2.2, a limiting spectrum arises. A limiting curve for

λ → 0 continues to exist, if one supplements (2.3) with the first three or with all four

approximations listed in section 2.2. From this, we conclude that approximating the argu-

ment of the strong coupling constant αs (Y + ln z + ln(1 − z)) → αs (Y + ln z) in singular

and αs (Y + ln z + ln(1 − z)) → αs (Y ) in regular terms on the right hand side of (2.3) is

at the origin of a limiting spectrum in the MLLA approach.3

In general, one should not expect to obtain finite results in the limit λ → 0, since λ

regulates the Landau pole of the strong coupling constant (2.7). One may ask, however,

how two approaches can show arbitrarily large numerical differences for sufficiently small

values of λ, if they differ parametrically by corrections of O(αs) only. We note that in

the limit λ → 0, the coupling constants with approximated argument are of the form

αs (Y ) ∝ 1/Y and αs (Y + ln z) ∝ 1/(Y + ln z). This dependence is distinctly different

from the assumption Y , ln[1/z] ∼ O
(

1/
√

αs

)

on which the approximations in section 2.2

are based. This illustrates that the parametric counting in powers of
√

αs becomes

problematic in the limit λ → 0.

We conclude this section by discussing characteristic preasymptotic features seen in

figure 6. In particular, after evolving for a few units in Y , the parton distributions for

λ = 1.0 are still peaked at very large values of x, where ln[1/x] ≪ 1. Qualitatively, the

structures at large x are due to the fact, that for small Y the phase space for evolution

shown in figure 1 excludes evolution to very small values x, and the driving term of the

evolution is the Sudakov form factor at x = 1. Upon evolution in Y , this Sudakov form

factor decreases faster for the more violent evolution with λ = 0.01 than for less violent

one with λ = 1.0, as can be seen from figure 2. For this reason, the parton distributions

in figure 6, which were calculated with λ = 0.01, decrease under evolution in Y much

faster in the region of larger x, than distributions evolved with larger values of λ. The

3We note that the limiting curve obtained from supplementing (2.3) with approximations 1 and 2 only

differs in norm and shape from the MLLA limiting spectrum. In particular, the interplay between the

argument of αs and the integration boundaries (see approximation 3 in section 2.2) in different terms of

the evolution equation is important for quantitative aspects of the solution.
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Figure 7. The continuous parts of single parton distributions. Dotted lines: the MLLA limiting

fragmentation for Y = 5.0. Solid lines: results for the coherent branching formalism with a choice of

λ = 0.01, Y = 5.2 and norm adjusted to 0.405 such that the distributions in quark jets almost match.

same qualitative features (though quantitatively less pronounced) are found in the MLLA

approach, where for small Y the continuous part of the single parton distribution differs

significantly from zero at large x, in particular for the case λ = 1.0 of a less violent evolution.

For λ = 0.01 and λ = 1.0, we have calculated the single-parton distributions inside

quark and gluon jets for evolution up to Y = 30 (results not shown). In this asymptotic

regime, similarly to the case λ = 0.2, the results obtained from the coherent branching

formalism and the MLLA approach can be made to coincide by a simple adjustment of the

norm. For λ = 1.0, the MLLA results are at large values of Y a factor 1.11 smaller for

gluon jets and a factor 1.16 smaller for quark jets. For λ = 0.01 the corresponding factors

are 1.72 for gluon jets and 1.80 for quark jets.

3.4 Matching MLLA to the coherent branching formalism

As shown in figures 3 and 6, single parton distributions calculated in the MLLA approach

differ for Y ≤ 5 both in norm and in shape from those calculated in the coherent branching

formalism. Besides the normalization, the spectra depend on two additional parameters,

namely Q0 and ΛQCD or equivalently Y and λ. Since the MLLA limiting fragmentation

function is at the basis of many phenomenologically successful comparisons, we ask here

to what extent a variation of the three parameters is sufficient to make results from the

coherent branching formalism coincide with a given result of the limiting fragmentation

function (λ → 0) obtained in the MLLA approach.

Figure 7 shows an example of the extent to which this is possible. Adjusting the norm,

the evolution time Y , and the value of λ, the single-parton distributions in a quark jet can

be made to coincide almost for both formalisms at Y = 5. More generally, we find that

the peak position of the single-parton distributions in either a quark or a gluon jet can

always be adjusted to agree between both approaches by varying Y and λ in the coherent

branching formalism. The total yield can then be adjusted by the norm. In general, small

values λ ≪ 1 are needed, for which the preasymptotic effects seen in figure 3 and 6

disappear rapidly with increasing Y .
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of λ and evolution up to different Y = 15, 20, 25 and 30, from top to bottom. By construction,

MLLA results assume the DLA relation (2.16).

On the other hand, it is not possible for Y ∼ 5 and with the same choice of λ to

get results of both formalisms to almost coincide for the distributions in both quark and

gluon jets . This is illustrated by the example given in figure 7, where marked differences

in norm and shape persist between the distributions in gluon jets, once the distributions

in quark jets have been adjusted. In particular, an independent adjustment of the norm

of G(l, Y ) is not sufficient to remove these differences. Also, we have tested (results not

shown) that these differences persist if one modifies the standard MLLA procedure by

including O(
√

αs)-corrections to the DLA expression (2.16) [1], which relates G and Q.

To explain why an adjustment of Y and λ cannot yield a good agreement for both

distributions Q and G, calculated in MLLA and the coherent branching formalism respec-

tively, we point to the ratio of single-parton distributions of a gluon and a quark jet in

figure 8. Within the MLLA approach, these distributions vary in norm but not in shape,

since the ratio G(l, Y )/Q(l, Y ) is fixed to the DLA value Nc/CF . On the contrary, within

the coherent branching formalism, the distributions in a quark jet and a gluon jet vary

both in norm and shape. Figure 8 shows that in a wide preasymptotic range, Y < 10, say,

adjusting Y and λ such that MLLA and the coherent branching formalism agree roughly

for Q, the two formalisms will yield different curves for G. While there are marked differ-

ences in G/Q between both formalisms at all Y , for sufficiently large Y these differences

die out in the region of large l ∼ O(Y ) to which the coherent branching formalism and the

MLLA approach are tailored.

4 Identified parton distributions in quark and gluon jet

So far, we have discussed the distribution of all partons within a quark or a gluon jet. For

related work on total parton multiplicities, we refer to [12,13]. The study presented in this

section considers the more differential distributions of quarks and of gluons within a quark

or a gluon jet. We characterize these distributions by subscripts. For instance, Qg(l, Y ) is

– 17 –



J
H
E
P
0
5
(
2
0
0
9
)
0
2
3

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

G
 (

l, 
Y

)

l = ln 1/x

λ = 0.2
all partons
gluons
quarks
quarks+gluons

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

Q
 (

l, 
Y

)

l = ln 1/x

all partons
gluons
quarks
quarks+gluons

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0  1  2  3  4  5

N
g(

Y
)

Y

λ = 0.2
all partons
gluons
quarks
quarks+gluons

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5

N
q(

Y
)

all partons
gluons
quarks
quarks+gluons

Figure 9. Left hand side: The continuous part of the single-parton distributions inside a gluon jet

(upper panel) and a quark jet (lower panel). Different curves denote the single-quark (dashed) and

single-gluon (dotted) distributions inside a jet, the explicit sum of these two distributions (dash-

dotted), and its comparison to the distribution of all partons in a jet (solid) obtained by evolving

the initial condition (2.10). The two latter curves coincide, as expected. Right hand side: the

Y -dependence of the total multiplicity of quarks, gluons and all partons calculated for the cases

shown on the left hand side.

the single-gluon distribution in a quark jet. As explained in subsection 2.1, single-quark

distributions are obtained by evolving from the initial conditions (2.8) and single-gluon

distributions are obtained by evolving from the initial condition (2.9). The phase space

constraints imply that there is no evolution in the coherent branching formalism up to

Y = ln 4. Since the continuous parts of the distributions vanish by definition at Y = ln 4,

the initial conditions (2.8) and (2.9) translate directly to the initial conditions for the

discrete parts

∆g(Y = ln 4) = 0 , ∆q(Y = ln 4) = 1 , if only quarks are counted,

∆g(Y = ln 4) = 1 , ∆q(Y = ln 4) = 0 , if only gluons are counted.
(4.1)

It is straightforward to check that if a discrete part equals zero at ln 4, then it stays zero

at any value of Y .

In general, the distribution of quarks inside a jet is harder than that of gluons. This is

a consequence of the fact that gluons are more likely to split. In the left panel of figure 9,

– 18 –



J
H
E
P
0
5
(
2
0
0
9
)
0
2
3

which shows the identified parton spectra in jets for λ = 0.2, this is clearly seen for all

values of Y . A particularly pronounced feature is seen in the single-quark distribution for

quark jets: up to Y = 5, this distribution peaks at very large x values corresponding to

l < 0.5. The integrated total quark multiplicity in this distribution, shown in the right

panel of figure 9, remains of order unity during this evolution, indicating that this single

quark distribution follows closely the momentum distribution of the evolved parent quark.

This parent quark evolves via q → q g splittings predominantly by emitting soft gluons.

For this reason, the quark distribution remains hard and the total multiplicity in the quark

jet is largely dominated by subsequent g → g g splittings. It is in precisely this sense that

the enhancement at large-x is a remnant of the δ-function in the initial condition, which

gradually becomes negligible in the evolution to larger Y . For the distribution of quarks

within a gluon jet, the situation is clearly different since the splitting function for g → q q̄

does not give rise to a logarithmic enhancement.

We have emphasized repeatedly that the approximations involved in deriving the co-

herent branching formalism do not guarantee an accurate description of the large-x region.

We note, however, that the reasons which we have identified for the pronounced large-x

enhancement of Qq(x, Y ) in figure 9 do not refer to particular features of an O(
√

αs) ap-

proximation, but emerge solely from generic features of the branching of quarks and gluons.

As a consequence, we expect that these features, though observed outside the strict region

of validity of the formalism explored here, correspond to physical reality and persist in a

more complete formulation of the problem, which is accurate in the large-x region. Indeed,

in Monte Carlo event generators, such an enhancement is seen on the level of partonic dis-

tributions [16–18]. In these event generators, it is generally the hadronization mechanism

which connects the color of the leading quark to the rest of the event, and which thus leads

to a hadronic single-inclusive distribution which is much softer than the partonic one.

For gluon jets as well as for quark jets, the jet multiplicity is ultimately dominated by

gluons. The distribution of the hardest gluon in the first g → g g splitting process is likely

to contribute significantly to the large values which G(l, Y ) shows in the large x region

(say l < 1.0) for small values of Y . Upon further evolution in Y , this structure disappears

faster in G(l, Y ) than in Q(l, Y ), since it is dominated in the first case by gluons, which

split more readily than quarks.

5 Conclusion

We have calculated single parton distributions inside quark and gluon jets as a function

of λ = lnQ0/ΛQCD and Y = ln E/Q0 within the coherent branching formalism (2.3), and

we have compared the results to those of the MLLA evolution equations (2.16) and (2.17).

As discussed explicitly in section 2.2, the MLLA evolution equations can be obtained from

the coherent branching formalism by a set of approximations, which are correct to next-to-

leading order in
√

αs within the kinematic range where Y , l ∼ O(1/
√

αs). Parametrically,

both approaches are complete to the same order in
√

αs within the same kinematical regime.

However, there are significant qualitative differences.
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The coherent branching formalism conserves energy exactly, while the MLLA approach

does not (see figure 5 and discussion in section 2.2). Moreover, while MLLA results ap-

proach a finite limiting spectrum for λ → 0, this limit does not exist in the coherent

branching formalism. In section 3.3, we have identified the approximations in deriving the

MLLA approach, which are at the origin of this behavior. Of particular importance is

an approximation of arguments of the coupling constant (approximation 2 in section 2.2),

which is parametrically justified but which induces a qualitative difference in the solution

if the regulator of the Landau pole is removed in the limit λ → 0.

Although the differences between both formalisms arise at an order in
√

αs, at which

both approaches are incomplete, we emphasize that these differences are worth studying

on physical grounds. The MLLA (λ → 0) limiting spectrum supplemented with LPHD is

of particular physical interest since it provides a rather satisfactory description of a large

body of experimental data with a minimal set of parameters. The coherent branching

formalism is of particular interest, since (although not accurate to a higher order in
√

αs

than MLLA), it incorporates features which one may expect from a more complete treat-

ment of higher-order terms. In particular, it supplements next-to-leading order accuracy in

O(
√

αs) with exact energy conservation. Moreover, it realizes a situation where in a per-

turbative calculation of single parton distributions, regularization of the Landau pole (i.e.

finite λ) is needed to obtain a finite result. Thus, we have compared in the present work

a phenomenologically successful approach with one, which is parametrically as accurate,

but which incorporates additional physical features which may be expected from a more

accurate treatment. This opens the opportunity to discuss the robustness of the physics

conclusions of the phenomenologically successful approach in the light of a parametrically

equally good and physically well-motivated different calculation.

The phenomenological success of the MLLA limiting spectrum supplemented by LPHD

supports a picture, in which hadronization proceeds by perturbative evolution down to to

the nominally non-perturbative scale Q0 = ΛQCD, followed by a one-to-one mapping of

partonic into hadronic distributions. The non-existence of the limit Q0 → ΛQCD in another,

parametrically equally accurate approach appears to question this picture. Here, we have

shown that in the coherent branching formalism, where the λ → 0-limit does not exist,

single inclusive spectra within a quark or within a gluon jet can be made to matched rather

well with a given MLLA limiting spectrum for small but finite λ ∼ 0.01 and after slight

adjustments of the hadronization scale and the normalization (which are fit parameters

in phenomenological comparisons of MLLA). This is consistent with earlier observations

that total jet multiplicities are best reproduced with fit values λ ≃ 0.015 ± 0.005 [12],

and that a satisfactory description of hadronic jet multiplicity moments can be obtained

for λ = 0.01 [22]. On the other hand, the right hand side of figure 7 illustrates that the

coherent branching formalism cannot be brought to agreement with the MLLA limiting

spectrum for quark and gluon jets at the same time. Even if one allows for independent

adjustments of the norm of Q and G, a visible difference in shape persists.

We close with some numerical estimates. The relation between the evolution variable

Y and the jet energy E depends on the jet opening angle θ and the hadronization scale

Q0, as seen from eq. (2.1). In the case of large angles, the approximate formula (2.1) must
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be replaced by the exact relation Y = ln(E sin θ/Q0). For a maximal jet opening angle

θ = π/2, we have then E = ΛQCD exp [Y + λ]. Taking ΛQCD = 200 MeV and λ ≪ 1, we

find E = 30 GeV for Y = 5 and E = 220 GeV for Y = 7. The value Y = 10 corresponds to a

jet energy E > 4TeV. So, for experimentally accessible jet energies, one should consider the

range 5 < Y < 10. We note that the above-mentioned differences between MLLA and the

coherent branching formalism persist throughout the experimentally accessible Y -range.
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